en
Giuseppe Ciaburro

Hands-On Reinforcement Learning with R

Beri tahu saya ketika buku ditambahkan
Untuk membaca buku ini unggah file EPUB atau FB2 ke Bookmate. Bagaimana cara mengunggah buku?
Implement key reinforcement learning algorithms and techniques using different R packages such as the Markov chain, MDP toolbox, contextual, and OpenAI Gym
Key FeaturesExplore the design principles of reinforcement learning and deep reinforcement learning modelsUse dynamic programming to solve design issues related to building a self-learning systemLearn how to systematically implement reinforcement learning algorithmsBook DescriptionReinforcement learning (RL) is an integral part of machine learning (ML), and is used to train algorithms. With this book, you'll learn how to implement reinforcement learning with R, exploring practical examples such as using tabular Q-learning to control robots.
You'll begin by learning the basic RL concepts, covering the agent-environment interface, Markov Decision Processes (MDPs), and policy gradient methods. You'll then use R's libraries to develop a model based on Markov chains. You will also learn how to solve a multi-armed bandit problem using various R packages. By applying dynamic programming and Monte Carlo methods, you will also find the best policy to make predictions. As you progress, you'll use Temporal Difference (TD) learning for vehicle routing problem applications. Gradually, you'll apply the concepts you've learned to real-world problems, including fraud detection in finance, and TD learning for planning activities in the healthcare sector. You'll explore deep reinforcement learning using Keras, which uses the power of neural networks to increase RL's potential. Finally, you'll discover the scope of RL and explore the challenges in building and deploying machine learning models.
By the end of this book, you'll be well-versed with RL and have the skills you need to efficiently implement it with R.
What you will learnUnderstand how to use MDP to manage complex scenariosSolve classic reinforcement learning problems such as the multi-armed bandit modelUse dynamic programming for optimal policy searchingAdopt Monte Carlo methods for predictionApply TD learning to search for the best pathUse tabular Q-learning to control robotsHandle environments using the OpenAI library to simulate real-world applicationsDevelop deep Q-learning algorithms to improve model performanceWho this book is forThis book is for anyone who wants to learn about reinforcement learning with R from scratch. A solid understanding of R and basic knowledge of machine learning are necessary to grasp the topics covered in the book.
Giuseppe Ciaburro holds a PhD in environmental technical physics, along with two master's degrees. His research was focused on machine learning applications in the study of urban sound environments. He works at the Built Environment Control Laboratory at the Università degli Studi della Campania Luigi Vanvitelli, Italy. He has over 18 years' professional experience in programming (Python, R, and MATLAB), first in the field of combustion, and then in acoustics and noise control. He has several publications to his credit.
Buku ini saat ini tidak tersedia
495 halaman cetak
Publikasi asli
2018
Tahun publikasi
2018
Sudahkah Anda membacanya? Bagaimanakah menurut Anda?
👍👎
fb2epub
Seret dan letakkan file Anda (maksimal 5 sekaligus)