en
Buku
Fouad Sabry

Scale Invariant Feature Transform

What is Scale Invariant Feature Transform

SIFT, which stands for scale-invariant feature transform, is a method for computer vision that was developed by David Lowe in 1999. Its purpose is to identify, describe, and coincide with local features in images. Object recognition, robotic mapping and navigation, picture stitching, three-dimensional modeling, gesture recognition, video tracking, individual identification of wildlife, and match moving are some of the applications that can be used.

How you will benefit

(I) Insights, and validations about the following topics:

Chapter 1: Scale-invariant feature transform

Chapter 2: Edge detection

Chapter 3: Scale space

Chapter 4: Gaussian blur

Chapter 5: Feature (computer vision)

Chapter 6: Corner detection

Chapter 7: Affine shape adaptation

Chapter 8: Hessian affine region detector

Chapter 9: Principal curvature-based region detector

Chapter 10: Oriented FAST and rotated BRIEF

(II) Answering the public top questions about scale invariant feature transform.

(III) Real world examples for the usage of scale invariant feature transform in many fields.

Who this book is for

Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Scale Invariant Feature Transform.
370 halaman cetak
Publikasi asli
2024
Tahun publikasi
2024
Sudahkah Anda membacanya? Bagaimanakah menurut Anda?
👍👎
fb2epub
Seret dan letakkan file Anda (maksimal 5 sekaligus)