en
Buku
Sebastian Raschka

Python Machine Learning

  • jyrtmembuat kutipan6 tahun yang lalu
    The main goal in supervised learning is to learn a model from labeled training data that allows us to make predictions about unseen or future data
  • jyrtmembuat kutipan6 tahun yang lalu
    In regression analysis, we are given a number of predictor (explanatory) variables and a continuous response variable (outcome), and we try to find a relationship between those variables that allows us to predict an outcome
  • jyrtmembuat kutipan6 tahun yang lalu
    In reinforcement learning, the goal is to develop a system (agent) that improves its performance based on interactions with the environment
  • natalysivchenkomembuat kutipan6 tahun yang lalu
    the rest of this book, we will use the superscript (i) to refer to the ith training sample, and the subscript j to refer to the jth dimension of the training datas
  • Per Nymann Jørgensenmembuat kutipan7 tahun yang lalu
    However, if you need a quick refresher, please take a look at Zico Kolter's excellent Linear Algebra Review and Reference, which is freely available at
  • Alexander Kozhevinmembuat kutipan7 tahun yang lalu
    However, if you need a quick refresher, please take a look at Zico Kolter's excellent Linear Algebra Review and Reference, which is freely available at http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf.
    The following figure illustrates how the net input
  • Alexander Kozhevinmembuat kutipan7 tahun yang lalu
    The three different types of machine learning

    In this section, we will take a look at the three types of machine learning: supervised learning, unsupervised
  • Nata Bukhmembuat kutipan8 tahun yang lalu
    the NLTK library for natural language processing (Chapter 8, Applying Machine Learning to Sentiment Analysis), the Flask web framework (Chapter 9, Embedding a Machine Learning Algorithm into a Web Application), the seaborn library for statistical data visualization (Chapter 10, Predicting Continuous Target Variables with Regression Analysis), and Theano for efficient neural network training on graphical processing units (Chapter 13, Parallelizing Neural Network Training with Theano).
fb2epub
Seret dan letakkan file Anda (maksimal 5 sekaligus)